Hydrogen peroxide-induced DNA damage is independent of nuclear calcium but dependent on redox-active ions.
نویسندگان
چکیده
In cells undergoing oxidative stress, DNA damage may result from attack by .OH radicals produced by the Fenton reaction, and/or by nucleases activated by nuclear calcium. In the present study, the participation of these two mechanisms was investigated in HeLa cells. Nuclear-targeted aequorin was used for selectively monitoring Ca2+ concentrations within the nuclei ([Ca2+]n), in conjunction with the cell-permeant calcium chelator bis-(o-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid acetoxymethyl ester (BAPTA/AM), the lipid-soluble broad-spectrum metal chelator with low affinity for Ca2+ and Mg2+ N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), and the high-affinity iron/copper chelator 1, 10-phenanthroline (PHE). In Ca2+-containing medium, H2O2 induced extensive DNA strand breaks and an increase in [Ca2+]n that was almost identical to that observed in the cytosol ([Ca2+]c). In cells bathed in Ca2+-free/EGTA medium, in which the increases in [Ca2+]n and [Ca2+]c due to H2O2 were significantly reduced, similar levels of DNA fragmentation also occurred. In cells preloaded with BAPTA/AM or TPEN, the small increase of [Ca2+]n normally elicited by H2O2 in Ca2+-free medium was completely buffered, and DNA damage was largely prevented. On the other hand, pretreatment with PHE did not affect the calcium response in the nuclei, but completely prevented DNA strand breakage induced by H2O2. Re-addition of 100 microM CuSO4 and 100 microM FeSO4 to TPEN- and PHE-treated cells prior to H2O2 challenge reversed the effect of TPEN and PHE, whereas 1 mM was necessary to negate the effect of BAPTA/AM. The levels of DNA strand breakage observed, however, did not correlate with the amounts of 8-hydroxy 2'-deoxyguanosine (8-OHdG): H2O2 did not produce 8-OHdG, whereas PHE alone slightly increased 8-OHdG levels. CuSO4 and FeSO4 enhanced the effects of PHE, particularly in the presence of H2O2. Exposure of cells to a mixture of CuSO4/FeSO4 also resulted in a significant increase in 8-OHdG levels, which was prevented in cells preloaded with BAPTA/AM. Similar results were obtained in a cell-free system using isolated calf thymus DNA exposed to CuSO4/FeSO4, regardless of whether H2O2 was present or not. These results suggest that BAPTA/AM prevents H2O2-induced DNA damage by acting as an iron/copper chelator. These data also indicate that caution must be exercised in using Ca2+ chelating agents as evidence for a role in cellular Ca2+ levels in experimental conditions in which transition-metal-ion-mediated oxidant production is also occurring.
منابع مشابه
Evaluating the effects of galbanic acid on hydrogen peroxide-induced oxidative DNA damage in human lymphocytes
Objective: Ferula szowitsiana has been widely used for medicinal purposes around the world. The anti-oxidant effect of F.szowitsiana had been proved. The current study aims to determine the protective effects of galbanic acid, a sesquiterpene coumarin from F. szowitsiana, against hydrogen peroxide (H2O2) - induced oxidative DNA damage in human lymphocytes. Materials and Methods: Human lymphocyt...
متن کاملRole of compartmentalized redox-active iron in hydrogen peroxide-induced DNA damage and apoptosis.
Jurkat cells in culture were exposed to oxidative stress in the form of continuously generated hydrogen peroxide, obtained by the addition of glucose oxidase to the medium. This treatment induced a rapid, dose-dependent increase in the ICIP (intracellular calcein-chelatable iron pool). Early destabilization of lysosomal membranes and subsequent nuclear DNA strand breaks were also observed, as e...
متن کاملMitochondrial localization of telomerase as a determinant for hydrogen peroxide-induced mitochondrial DNA damage and apoptosis.
We have previously shown that the protein subunit of telomerase, hTERT, has a bonafide N-terminal mitochondrial targeting sequence, and that ectopic hTERT expression in human cells correlated with increase in mtDNA damage after hydrogen peroxide treatment. In this study, we show, using a loxP hTERT construct, that this increase in mtDNA damage following hydrogen peroxide exposure is dependent o...
متن کاملThe basic chemistry of exercise-induced DNA oxidation: oxidative damage, redox signaling, and their interplay
Acute exercise increases reactive oxygen and nitrogen species generation. This phenomenon is associated with two major outcomes: (1) redox signaling and (2) macromolecule damage. Mechanistic knowledge of how exercise-induced redox signaling and macromolecule damage are interlinked is limited. This review focuses on the interplay between exercise-induced redox signaling and DNA damage, using hyd...
متن کاملTranslocation of Cockayne syndrome group A protein to the nuclear matrix: possible relevance to transcription-coupled DNA repair.
Transcription-coupled repair (TCR) efficiently removes a variety of lesions from the transcribed strand of active genes. By allowing rapid resumption of RNA synthesis, the process is of major importance for cellular resistance to transcription-blocking genotoxic damage. Mutations in the Cockayne syndrome group A or B (CSA or CSB) gene result in defective TCR. However, the exact mechanism of TCR...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 335 ( Pt 1) شماره
صفحات -
تاریخ انتشار 1998